3.947 \(\int \frac{(a+b x^2)^{3/2}}{x \sqrt{c+d x^2}} \, dx\)

Optimal. Leaf size=133 \[ -\frac{a^{3/2} \tanh ^{-1}\left (\frac{\sqrt{c} \sqrt{a+b x^2}}{\sqrt{a} \sqrt{c+d x^2}}\right )}{\sqrt{c}}-\frac{\sqrt{b} (b c-3 a d) \tanh ^{-1}\left (\frac{\sqrt{d} \sqrt{a+b x^2}}{\sqrt{b} \sqrt{c+d x^2}}\right )}{2 d^{3/2}}+\frac{b \sqrt{a+b x^2} \sqrt{c+d x^2}}{2 d} \]

[Out]

(b*Sqrt[a + b*x^2]*Sqrt[c + d*x^2])/(2*d) - (a^(3/2)*ArcTanh[(Sqrt[c]*Sqrt[a + b*x^2])/(Sqrt[a]*Sqrt[c + d*x^2
])])/Sqrt[c] - (Sqrt[b]*(b*c - 3*a*d)*ArcTanh[(Sqrt[d]*Sqrt[a + b*x^2])/(Sqrt[b]*Sqrt[c + d*x^2])])/(2*d^(3/2)
)

________________________________________________________________________________________

Rubi [A]  time = 0.139794, antiderivative size = 133, normalized size of antiderivative = 1., number of steps used = 8, number of rules used = 8, integrand size = 26, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.308, Rules used = {446, 102, 157, 63, 217, 206, 93, 208} \[ -\frac{a^{3/2} \tanh ^{-1}\left (\frac{\sqrt{c} \sqrt{a+b x^2}}{\sqrt{a} \sqrt{c+d x^2}}\right )}{\sqrt{c}}-\frac{\sqrt{b} (b c-3 a d) \tanh ^{-1}\left (\frac{\sqrt{d} \sqrt{a+b x^2}}{\sqrt{b} \sqrt{c+d x^2}}\right )}{2 d^{3/2}}+\frac{b \sqrt{a+b x^2} \sqrt{c+d x^2}}{2 d} \]

Antiderivative was successfully verified.

[In]

Int[(a + b*x^2)^(3/2)/(x*Sqrt[c + d*x^2]),x]

[Out]

(b*Sqrt[a + b*x^2]*Sqrt[c + d*x^2])/(2*d) - (a^(3/2)*ArcTanh[(Sqrt[c]*Sqrt[a + b*x^2])/(Sqrt[a]*Sqrt[c + d*x^2
])])/Sqrt[c] - (Sqrt[b]*(b*c - 3*a*d)*ArcTanh[(Sqrt[d]*Sqrt[a + b*x^2])/(Sqrt[b]*Sqrt[c + d*x^2])])/(2*d^(3/2)
)

Rule 446

Int[(x_)^(m_.)*((a_) + (b_.)*(x_)^(n_))^(p_.)*((c_) + (d_.)*(x_)^(n_))^(q_.), x_Symbol] :> Dist[1/n, Subst[Int
[x^(Simplify[(m + 1)/n] - 1)*(a + b*x)^p*(c + d*x)^q, x], x, x^n], x] /; FreeQ[{a, b, c, d, m, n, p, q}, x] &&
 NeQ[b*c - a*d, 0] && IntegerQ[Simplify[(m + 1)/n]]

Rule 102

Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_.)*((e_.) + (f_.)*(x_))^(p_.), x_Symbol] :> Simp[(b*(a +
 b*x)^(m - 1)*(c + d*x)^(n + 1)*(e + f*x)^(p + 1))/(d*f*(m + n + p + 1)), x] + Dist[1/(d*f*(m + n + p + 1)), I
nt[(a + b*x)^(m - 2)*(c + d*x)^n*(e + f*x)^p*Simp[a^2*d*f*(m + n + p + 1) - b*(b*c*e*(m - 1) + a*(d*e*(n + 1)
+ c*f*(p + 1))) + b*(a*d*f*(2*m + n + p) - b*(d*e*(m + n) + c*f*(m + p)))*x, x], x], x] /; FreeQ[{a, b, c, d,
e, f, n, p}, x] && GtQ[m, 1] && NeQ[m + n + p + 1, 0] && IntegersQ[2*m, 2*n, 2*p]

Rule 157

Int[(((c_.) + (d_.)*(x_))^(n_)*((e_.) + (f_.)*(x_))^(p_)*((g_.) + (h_.)*(x_)))/((a_.) + (b_.)*(x_)), x_Symbol]
 :> Dist[h/b, Int[(c + d*x)^n*(e + f*x)^p, x], x] + Dist[(b*g - a*h)/b, Int[((c + d*x)^n*(e + f*x)^p)/(a + b*x
), x], x] /; FreeQ[{a, b, c, d, e, f, g, h, n, p}, x]

Rule 63

Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_), x_Symbol] :> With[{p = Denominator[m]}, Dist[p/b, Sub
st[Int[x^(p*(m + 1) - 1)*(c - (a*d)/b + (d*x^p)/b)^n, x], x, (a + b*x)^(1/p)], x]] /; FreeQ[{a, b, c, d}, x] &
& NeQ[b*c - a*d, 0] && LtQ[-1, m, 0] && LeQ[-1, n, 0] && LeQ[Denominator[n], Denominator[m]] && IntLinearQ[a,
b, c, d, m, n, x]

Rule 217

Int[1/Sqrt[(a_) + (b_.)*(x_)^2], x_Symbol] :> Subst[Int[1/(1 - b*x^2), x], x, x/Sqrt[a + b*x^2]] /; FreeQ[{a,
b}, x] &&  !GtQ[a, 0]

Rule 206

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1*ArcTanh[(Rt[-b, 2]*x)/Rt[a, 2]])/(Rt[a, 2]*Rt[-b, 2]), x]
 /; FreeQ[{a, b}, x] && NegQ[a/b] && (GtQ[a, 0] || LtQ[b, 0])

Rule 93

Int[(((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_))/((e_.) + (f_.)*(x_)), x_Symbol] :> With[{q = Denomin
ator[m]}, Dist[q, Subst[Int[x^(q*(m + 1) - 1)/(b*e - a*f - (d*e - c*f)*x^q), x], x, (a + b*x)^(1/q)/(c + d*x)^
(1/q)], x]] /; FreeQ[{a, b, c, d, e, f}, x] && EqQ[m + n + 1, 0] && RationalQ[n] && LtQ[-1, m, 0] && SimplerQ[
a + b*x, c + d*x]

Rule 208

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(Rt[-(a/b), 2]*ArcTanh[x/Rt[-(a/b), 2]])/a, x] /; FreeQ[{a,
b}, x] && NegQ[a/b]

Rubi steps

\begin{align*} \int \frac{\left (a+b x^2\right )^{3/2}}{x \sqrt{c+d x^2}} \, dx &=\frac{1}{2} \operatorname{Subst}\left (\int \frac{(a+b x)^{3/2}}{x \sqrt{c+d x}} \, dx,x,x^2\right )\\ &=\frac{b \sqrt{a+b x^2} \sqrt{c+d x^2}}{2 d}+\frac{\operatorname{Subst}\left (\int \frac{a^2 d-\frac{1}{2} b (b c-3 a d) x}{x \sqrt{a+b x} \sqrt{c+d x}} \, dx,x,x^2\right )}{2 d}\\ &=\frac{b \sqrt{a+b x^2} \sqrt{c+d x^2}}{2 d}+\frac{1}{2} a^2 \operatorname{Subst}\left (\int \frac{1}{x \sqrt{a+b x} \sqrt{c+d x}} \, dx,x,x^2\right )-\frac{(b (b c-3 a d)) \operatorname{Subst}\left (\int \frac{1}{\sqrt{a+b x} \sqrt{c+d x}} \, dx,x,x^2\right )}{4 d}\\ &=\frac{b \sqrt{a+b x^2} \sqrt{c+d x^2}}{2 d}+a^2 \operatorname{Subst}\left (\int \frac{1}{-a+c x^2} \, dx,x,\frac{\sqrt{a+b x^2}}{\sqrt{c+d x^2}}\right )-\frac{(b c-3 a d) \operatorname{Subst}\left (\int \frac{1}{\sqrt{c-\frac{a d}{b}+\frac{d x^2}{b}}} \, dx,x,\sqrt{a+b x^2}\right )}{2 d}\\ &=\frac{b \sqrt{a+b x^2} \sqrt{c+d x^2}}{2 d}-\frac{a^{3/2} \tanh ^{-1}\left (\frac{\sqrt{c} \sqrt{a+b x^2}}{\sqrt{a} \sqrt{c+d x^2}}\right )}{\sqrt{c}}-\frac{(b c-3 a d) \operatorname{Subst}\left (\int \frac{1}{1-\frac{d x^2}{b}} \, dx,x,\frac{\sqrt{a+b x^2}}{\sqrt{c+d x^2}}\right )}{2 d}\\ &=\frac{b \sqrt{a+b x^2} \sqrt{c+d x^2}}{2 d}-\frac{a^{3/2} \tanh ^{-1}\left (\frac{\sqrt{c} \sqrt{a+b x^2}}{\sqrt{a} \sqrt{c+d x^2}}\right )}{\sqrt{c}}-\frac{\sqrt{b} (b c-3 a d) \tanh ^{-1}\left (\frac{\sqrt{d} \sqrt{a+b x^2}}{\sqrt{b} \sqrt{c+d x^2}}\right )}{2 d^{3/2}}\\ \end{align*}

Mathematica [A]  time = 0.749248, size = 195, normalized size = 1.47 \[ \frac{\sqrt{d} \left (b \sqrt{a+b x^2} \left (c+d x^2\right )-\frac{2 a^{3/2} d \sqrt{c+d x^2} \tanh ^{-1}\left (\frac{\sqrt{c} \sqrt{a+b x^2}}{\sqrt{a} \sqrt{c+d x^2}}\right )}{\sqrt{c}}\right )-\frac{\left (3 a^2 d^2-4 a b c d+b^2 c^2\right ) \sqrt{\frac{b \left (c+d x^2\right )}{b c-a d}} \sinh ^{-1}\left (\frac{\sqrt{d} \sqrt{a+b x^2}}{\sqrt{b c-a d}}\right )}{\sqrt{b c-a d}}}{2 d^{3/2} \sqrt{c+d x^2}} \]

Antiderivative was successfully verified.

[In]

Integrate[(a + b*x^2)^(3/2)/(x*Sqrt[c + d*x^2]),x]

[Out]

(-(((b^2*c^2 - 4*a*b*c*d + 3*a^2*d^2)*Sqrt[(b*(c + d*x^2))/(b*c - a*d)]*ArcSinh[(Sqrt[d]*Sqrt[a + b*x^2])/Sqrt
[b*c - a*d]])/Sqrt[b*c - a*d]) + Sqrt[d]*(b*Sqrt[a + b*x^2]*(c + d*x^2) - (2*a^(3/2)*d*Sqrt[c + d*x^2]*ArcTanh
[(Sqrt[c]*Sqrt[a + b*x^2])/(Sqrt[a]*Sqrt[c + d*x^2])])/Sqrt[c]))/(2*d^(3/2)*Sqrt[c + d*x^2])

________________________________________________________________________________________

Maple [B]  time = 0.014, size = 287, normalized size = 2.2 \begin{align*}{\frac{1}{4\,d}\sqrt{b{x}^{2}+a}\sqrt{d{x}^{2}+c} \left ( 3\,\ln \left ( 1/2\,{\frac{2\,d{x}^{2}b+2\,\sqrt{bd{x}^{4}+ad{x}^{2}+bc{x}^{2}+ac}\sqrt{bd}+ad+bc}{\sqrt{bd}}} \right ) \sqrt{ac}abd-\ln \left ({\frac{1}{2} \left ( 2\,d{x}^{2}b+2\,\sqrt{bd{x}^{4}+ad{x}^{2}+bc{x}^{2}+ac}\sqrt{bd}+ad+bc \right ){\frac{1}{\sqrt{bd}}}} \right ) \sqrt{ac}{b}^{2}c-2\,\sqrt{bd}\ln \left ({\frac{ad{x}^{2}+bc{x}^{2}+2\,\sqrt{ac}\sqrt{bd{x}^{4}+ad{x}^{2}+bc{x}^{2}+ac}+2\,ac}{{x}^{2}}} \right ){a}^{2}d+2\,\sqrt{bd{x}^{4}+ad{x}^{2}+bc{x}^{2}+ac}\sqrt{bd}\sqrt{ac}b \right ){\frac{1}{\sqrt{bd{x}^{4}+ad{x}^{2}+bc{x}^{2}+ac}}}{\frac{1}{\sqrt{bd}}}{\frac{1}{\sqrt{ac}}}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((b*x^2+a)^(3/2)/x/(d*x^2+c)^(1/2),x)

[Out]

1/4*(b*x^2+a)^(1/2)*(d*x^2+c)^(1/2)*(3*ln(1/2*(2*d*x^2*b+2*(b*d*x^4+a*d*x^2+b*c*x^2+a*c)^(1/2)*(b*d)^(1/2)+a*d
+b*c)/(b*d)^(1/2))*(a*c)^(1/2)*a*b*d-ln(1/2*(2*d*x^2*b+2*(b*d*x^4+a*d*x^2+b*c*x^2+a*c)^(1/2)*(b*d)^(1/2)+a*d+b
*c)/(b*d)^(1/2))*(a*c)^(1/2)*b^2*c-2*(b*d)^(1/2)*ln((a*d*x^2+b*c*x^2+2*(a*c)^(1/2)*(b*d*x^4+a*d*x^2+b*c*x^2+a*
c)^(1/2)+2*a*c)/x^2)*a^2*d+2*(b*d*x^4+a*d*x^2+b*c*x^2+a*c)^(1/2)*(b*d)^(1/2)*(a*c)^(1/2)*b)/(b*d*x^4+a*d*x^2+b
*c*x^2+a*c)^(1/2)/d/(b*d)^(1/2)/(a*c)^(1/2)

________________________________________________________________________________________

Maxima [F(-2)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Exception raised: ValueError} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((b*x^2+a)^(3/2)/x/(d*x^2+c)^(1/2),x, algorithm="maxima")

[Out]

Exception raised: ValueError

________________________________________________________________________________________

Fricas [B]  time = 6.18854, size = 2017, normalized size = 15.17 \begin{align*} \text{result too large to display} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((b*x^2+a)^(3/2)/x/(d*x^2+c)^(1/2),x, algorithm="fricas")

[Out]

[1/8*(2*a*d*sqrt(a/c)*log(((b^2*c^2 + 6*a*b*c*d + a^2*d^2)*x^4 + 8*a^2*c^2 + 8*(a*b*c^2 + a^2*c*d)*x^2 - 4*(2*
a*c^2 + (b*c^2 + a*c*d)*x^2)*sqrt(b*x^2 + a)*sqrt(d*x^2 + c)*sqrt(a/c))/x^4) - (b*c - 3*a*d)*sqrt(b/d)*log(8*b
^2*d^2*x^4 + b^2*c^2 + 6*a*b*c*d + a^2*d^2 + 8*(b^2*c*d + a*b*d^2)*x^2 + 4*(2*b*d^2*x^2 + b*c*d + a*d^2)*sqrt(
b*x^2 + a)*sqrt(d*x^2 + c)*sqrt(b/d)) + 4*sqrt(b*x^2 + a)*sqrt(d*x^2 + c)*b)/d, 1/4*(a*d*sqrt(a/c)*log(((b^2*c
^2 + 6*a*b*c*d + a^2*d^2)*x^4 + 8*a^2*c^2 + 8*(a*b*c^2 + a^2*c*d)*x^2 - 4*(2*a*c^2 + (b*c^2 + a*c*d)*x^2)*sqrt
(b*x^2 + a)*sqrt(d*x^2 + c)*sqrt(a/c))/x^4) + (b*c - 3*a*d)*sqrt(-b/d)*arctan(1/2*(2*b*d*x^2 + b*c + a*d)*sqrt
(b*x^2 + a)*sqrt(d*x^2 + c)*sqrt(-b/d)/(b^2*d*x^4 + a*b*c + (b^2*c + a*b*d)*x^2)) + 2*sqrt(b*x^2 + a)*sqrt(d*x
^2 + c)*b)/d, 1/8*(4*a*d*sqrt(-a/c)*arctan(1/2*((b*c + a*d)*x^2 + 2*a*c)*sqrt(b*x^2 + a)*sqrt(d*x^2 + c)*sqrt(
-a/c)/(a*b*d*x^4 + a^2*c + (a*b*c + a^2*d)*x^2)) - (b*c - 3*a*d)*sqrt(b/d)*log(8*b^2*d^2*x^4 + b^2*c^2 + 6*a*b
*c*d + a^2*d^2 + 8*(b^2*c*d + a*b*d^2)*x^2 + 4*(2*b*d^2*x^2 + b*c*d + a*d^2)*sqrt(b*x^2 + a)*sqrt(d*x^2 + c)*s
qrt(b/d)) + 4*sqrt(b*x^2 + a)*sqrt(d*x^2 + c)*b)/d, 1/4*(2*a*d*sqrt(-a/c)*arctan(1/2*((b*c + a*d)*x^2 + 2*a*c)
*sqrt(b*x^2 + a)*sqrt(d*x^2 + c)*sqrt(-a/c)/(a*b*d*x^4 + a^2*c + (a*b*c + a^2*d)*x^2)) + (b*c - 3*a*d)*sqrt(-b
/d)*arctan(1/2*(2*b*d*x^2 + b*c + a*d)*sqrt(b*x^2 + a)*sqrt(d*x^2 + c)*sqrt(-b/d)/(b^2*d*x^4 + a*b*c + (b^2*c
+ a*b*d)*x^2)) + 2*sqrt(b*x^2 + a)*sqrt(d*x^2 + c)*b)/d]

________________________________________________________________________________________

Sympy [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{\left (a + b x^{2}\right )^{\frac{3}{2}}}{x \sqrt{c + d x^{2}}}\, dx \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((b*x**2+a)**(3/2)/x/(d*x**2+c)**(1/2),x)

[Out]

Integral((a + b*x**2)**(3/2)/(x*sqrt(c + d*x**2)), x)

________________________________________________________________________________________

Giac [B]  time = 1.3083, size = 284, normalized size = 2.14 \begin{align*} -\frac{{\left (\frac{4 \, \sqrt{b d} a^{2} \arctan \left (-\frac{b^{2} c + a b d -{\left (\sqrt{b x^{2} + a} \sqrt{b d} - \sqrt{b^{2} c +{\left (b x^{2} + a\right )} b d - a b d}\right )}^{2}}{2 \, \sqrt{-a b c d} b}\right )}{\sqrt{-a b c d} b} - \frac{2 \, \sqrt{b^{2} c +{\left (b x^{2} + a\right )} b d - a b d} \sqrt{b x^{2} + a}}{b d} - \frac{{\left (\sqrt{b d} b c - 3 \, \sqrt{b d} a d\right )} \log \left ({\left (\sqrt{b x^{2} + a} \sqrt{b d} - \sqrt{b^{2} c +{\left (b x^{2} + a\right )} b d - a b d}\right )}^{2}\right )}{b d^{2}}\right )} b^{2}}{4 \,{\left | b \right |}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((b*x^2+a)^(3/2)/x/(d*x^2+c)^(1/2),x, algorithm="giac")

[Out]

-1/4*(4*sqrt(b*d)*a^2*arctan(-1/2*(b^2*c + a*b*d - (sqrt(b*x^2 + a)*sqrt(b*d) - sqrt(b^2*c + (b*x^2 + a)*b*d -
 a*b*d))^2)/(sqrt(-a*b*c*d)*b))/(sqrt(-a*b*c*d)*b) - 2*sqrt(b^2*c + (b*x^2 + a)*b*d - a*b*d)*sqrt(b*x^2 + a)/(
b*d) - (sqrt(b*d)*b*c - 3*sqrt(b*d)*a*d)*log((sqrt(b*x^2 + a)*sqrt(b*d) - sqrt(b^2*c + (b*x^2 + a)*b*d - a*b*d
))^2)/(b*d^2))*b^2/abs(b)